

Segmentation Evaluation using SegEval

A package providing text segmentation evaluation metrics and utilities. (Installation)

Text segmentation is the task of splitting up any amount of text into segments by placing boundaries between some atomic unit (e.g., morphemes, words, lines, sentences, paragraphs, sections, etc.). It’s a common pre-processing step in many Natural Language Processing (NLP) [http://en.wikipedia.org/wiki/Natural_language_processing] tasks.

E.g., if we were to perform both manual and automatic syllabification [http://en.wikipedia.org/wiki/Syllabification] of words, one may need a way to compare how close the automatic solution is to the manual one. For this, we can use Boundary Edit Distance and Boundary Similarity. Evaluating a hypothetical automatic syllabifier [http://nbviewer.ipython.org/urls/raw.github.com/cfournie/segmentation.evaluation/master/examples/syllabification_evaluation.ipynb], we can obtain the results shown below.

	Word
	Manual Solution
	Automatic Solution
	Boundary Edit Distance
	Boundary Similarity

	automatic
	au·to·ma·tic
	au·tom·a·tic
	2 matches, 1 near
	0.83

	segmentation
	seg·men·ta·tion
	seg·ment·ation
	1 match, 1 near, 1 miss
	0.50

	is
	is
	is
	No edits
	1.00

	fun
	fun
	f·un
	1 miss
	0.00

This package is a collection of metrics and for comparing text segmentations and evaluating automatic text segmenters. Both new (Boundary Similarity, Segmentation Similarity) and traditional (WindowDiff, Pk) are included, as well as inter-coder agreement coefficients and confusion matrices based upon a boundary edit distance.

For more examples of how to use SegEval, see “An initial study of topical poetry segmentation [http://nbviewer.ipython.org/urls/raw.github.com/cfournie/initial.poetry.segmentation/master/khan_segmentation.ipynb]”.

	Release:	2.0.11 (changelog [https://github.com/cfournie/segmentation.evaluation/blob/master/HISTORY.rst])

	Date:	May 13, 2017

Feature Support

A variety of segmentation comparison metrics are implemented, including:

	Boundary Edit Distance (BED; [Fournier2013])

	Boundary Similarity (B; [Fournier2013])

	BED-based confusion matrices (and precision/recall/F1; [Fournier2013])

	Segmentation Similarity (S; [FournierInkpen2012])

	WindowDiff [PevznerHearst2002]

	Pk [BeefermanBerger1999]

Additionally, B-based inter-coder agreement coefficients for segmentation that are suitable for 2 or more coders are provided, including:

	Fleiss’ [image: \pi] [Fleiss1971] (i.e., Siegel and Castellan’s [image: K] [SiegelCastellan1988])

	Fleiss’ [image: \kappa] [DaviesFleiss1982]

User Guide

This part of the documentation, which is mostly prose, begins with some
background information about Requests, then focuses on step-by-step
instructions for getting the most out of Requests.

	Introduction
	License

	Installation
	Distribute & Pip

	Get the Code

	Quickstart
	Loading Data

	Comparing Segmentations

	Computing Inter-Coder Agreement

API Documentation

If you are looking for information on a specific function, class or method,
this part of the documentation is for you.

	Developer Interface
	Boundary-Edit-Distance-based Metrics

	Traditional Metrics

	Inter-coder Agreement Coefficients

	Format Conversion

	Data

	Information-Retrieval-related Statistics

Support

If you have any suggestions, problems, or difficulties, please log an issue [https://github.com/cfournie/segmentation.evaluation/issues], or contact me [http://nlp.chrisfournier.ca/about/].

Citing SegEval

If you’re using this software for research, please cite the ACL paper [Fournier2013] and, if you need to go into details, the thesis [Fournier2013b] describing this work.

BibTeX:

@inproceedings{Fournier2013a,
 author = {Fournier, Chris},
 year = {2013},
 title = {{Evaluating Text Segmentation using Boundary Edit Distance}},
 booktitle = {Proceedings of 51st Annual Meeting of the Association for Computational Linguistics},
 publisher = {Association for Computational Linguistics},
 location = {Sophia, Bulgaria},
 pages = {to appear},
 address = {Stroudsburg, PA, USA}
}

@mastersthesis{Fournier2013b,
 author = {Fournier, Chris},
 title = {Evaluating Text Segmentation},
 school = {University of Ottawa},
 year = {2013}
}

References

	[ArtsteinPoesio2008]	Ron Artstein and Massimo Poesio. 2008. Inter-coder agreement for computational linguistics. Computational Linguistics, 4(4):555-596. MIT Press.

	[Baker1990]	David Baker. 1990. Stargazers look for life. South Magazine 117, 76–77. South Publications.

	[BeefermanBerger1999]	Doug Beeferman and Adam Berger. 1999. Statistical models for text segmentation. Machine learning, 34(1–210. Springer Netherlands.

	[Cohen1960]	Jacob Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1):37-46.

	[Collins1868]	Wilkie Collins. 1868. The Moonstone. Tinsley Brothers.

	[DaviesFleiss1982]	Mark Davies and Joseph L. Fleiss. 1982. Measuring agreement for multinomial data. Biometrics, 38(4):1047-1051.

	[Fleiss1971]	Joseph L. Fleiss. 1971. Measuring nominal scale agreement among many raters. Psychological Bulletin, 76(5):378-382.

	[Fournier2013]	(1, 2, 3, 4) Chris Fournier. 2013. Evaluating Text Segmentation using Boundary Edit Distance. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics. To appear.

	[Fournier2013b]	Chris Fournier. 2013. Evaluating Text Segmentation. Master’s Thesis. University of Ottawa.

	[FournierInkpen2012]	Chris Fournier and Diana Inkpen. 2012. Segmentation Similarity and Agreement. Proceedings of Human Language Technologies: The 2012 Annual Conference of the North American Chapter of the Association for Computational Linguistics. (HLT ‘12). Association for Computational Linguistics.

	[Hearst1997]	Marti A. Hearst. 1997. TextTiling: Segmenting Text into Multi-paragraph Subtopic Passages. Computational Linguistics, 23(1):33-64.

	[KazantsevaSzpakowicz2012]	Kazantseva, A. & Szpakowicz, S. (2012), Topicalsegmentation: a study of human performance. Proceedings of Human Language Technologies: The 2012 Annual Conference of the North American Chapter of the Association for Computational Linguistics. (HLT ‘12). Association for Computational Linguistics.

	[LamprierEtAl2007]	Sylvain Lamprier, Tassadit Amghar, Bernard Levrat, and Frederic Saubion 2007. On evaluation methodologies for text segmentation algorithms. Proceedings of the 19th IEEE International Conference on Tools with Arificial Intelligence, 2:19–26. IEEE Computer Society.

	[PevznerHearst2002]	Lev Pevzner and Marti A. Hearst. 2002. A critique and improvement of an evaluation metric for text segmentation. Computational Linguistics, 28(1):19–36. MIT Press, Cambridge, MA, USA.

	[Scott1955]	William A. Scott. 1955. Reliability of content analysis: The case of nominal scale coding. Public Opinion Quarterly, 19(3):321-325.

	[SiegelCastellan1988]	Sidney Siegel and N. John Castellan, Jr. 1988. Non-parametric Statistics for the Behavioral Sciences. 2nd Edition, Castellanhapter 9.8. McGraw-Hill.

Introduction

This package aims to make comparing text segmentations and evaluating ones segmentation data and methods easier.
It implements the new segmentation comparison metrics detailed in [Fournier2013] and [Fournier2013b].

License

Copyright (c) 2011-2013 Chris Fournier

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the author nor the names of its contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Installation

This part of the documentation covers the installation of SegEval.
The first step to using any software package is getting it properly installed.

Distribute & Pip

Installing segeval can be performed using pip [http://www.pip-installer.org/]:

$ pip install segeval

Get the Code

Segeval’s code is available on GitHub [https://github.com/cfournie/segmentation.evaluation].

You can either clone the public repository:

git clone git://github.com/cfournie/segmentation.evaluation.git

Download the tarball [https://github.com/cfournie/segmentation.evaluation/tarball/master]:

$ curl -OL https://github.com/cfournie/segmentation.evaluation/tarball/master

Or, download the zipball [https://github.com/cfournie/segmentation.evaluation/zipball/master]:

$ curl -OL https://github.com/cfournie/segmentation.evaluation/zipball/master

Once you have a copy of the source, you can embed it in your Python package, or install it into your site-packages easily:

$ python setup.py install

Quickstart

This page gives a good introduction in how to get started
with SegEval. This assumes you already have SegEval installed. If you do not, head over to the Installation section.

Let’s get started with some simple examples.

Loading Data

Start by encoding the size of each segment produced by each coder for a document (e.g. the Stargazer’s text segmented in [Hearst1997]) as JSON [http://www.json.org/] using the format shown below.

{
	"items": {
		"stargazer": {
			"1": [2,3,3,1,3,6,3],
			"2": [2,8,2,4,2,3],
			"3": [2,1,2,3,1,3,1,3,2,2,1],
			"4": [2,1,4,1,1,3,1,4,3,1],
			"5": [3,2,4,3,5,4],
			"6": [2,3,4,2,2,5,3],
			"7": [2,3,2,2,3,1,3,2,3]
		}
	},
	"segmentation_type": "linear"
}

Begin by importing the SegEval module:

>>> import segeval

Now, let’s import this data using the input_linear_mass_json() function:

>>> dataset = segeval.input_linear_mass_json('hearst1997.json')

Now, we have a Dataset object called dataset. We can compute a variety of statistics upon this data.

Comparing Segmentations

Given a dataset, if we wanted to compare two coder’s responses together, we can select the coder’s that we care about much like how one accesses arrays/dictionary items:

>>> import segeval
>>> dataset = segeval.HEARST_1997_STARGAZER
>>> segmentation1 = dataset['stargazer']['1']
>>> segmentation2 = dataset['stargazer']['2']

Segmentations can then be compared using functions such as:

>>> segeval.boundary_similarity(segmentation1, segmentation2)
Decimal('0.5')

Other metrics are also available, including:

>>> segeval.segmentation_similarity(segmentation1, segmentation2)
Decimal('0.825')

If instead of one metric you desire a large number of statistics about the difference between two boundaries, you can use:

>>> segeval.boundary_statistics(segmentation1, segmentation2)

This produces:

{
 'matches': [1, 1, 1], # List of matching boundary types
 'boundaries_all': 11,
 'pbs': 20, # Potential boundaries
 'transpositions': [Transposition(start=8, end=9, type=1)],
 'full_misses': [1, 1, 1, 1, 1], # List of full miss boundary types
 'additions': [Addition(type=1, side='b'), Addition(type=1, side='a'), Addition(type=1, side='a')],
 'count_edits': Decimal('3.5'), # Scaled count of all edits
 'substitutions': []
}

If instead we had a hypothetical segmentation generated by an automatic segmenter and we wanted to compare it against segmentation1, we could use these metrics:

>>> hypothesis = (2,6,4,2,4,3)
>>> reference = dataset['stargazer']['1']
>>> segeval.boundary_similarity(hypothesis, reference)
Decimal('0.5714285714285714285714285714')

Some traditional segmentation comparison metrics can also be used:

>>> segeval.window_diff(hypothesis, reference)
Decimal('0.3157894736842105263157894737')
>>> segeval.pk(hypothesis, reference)
Decimal('0.2631578947368421052631578947')

If instead one wants to analyze this as a boundary classification task, we can produce a confusion matrix using:

>>> confusion_matrix = segeval.boundary_confusion_matrix(hypothesis, reference)

This produces a ConfusionMatrix object named confusion_matrix. This confusion matrix can then be passed to information retrieval metrics, such as:

>>> segeval.precision(confusion_matrix)
Decimal('0.5714285714285714285714285714')
>>> segeval.recall(confusion_matrix)
Decimal('0.5714285714285714285714285714')
>>> segeval.fmeasure(confusion_matrix)
Decimal('0.7272727272727272727272727267')

All of these functions can be used on either pairs of segmentations, single Dataset objects (computing pairwise values), and two Dataset objects (comparing the coders in one to all coders in another).
Comparing two Dataset objects is how one could compare a set of automatic segmenters to a set of human segmenters to evaluate the performance of the automatic segmenters, for example:

>>> manual = segeval.HEARST_1997_STARGAZER
>>> automatic = segeval.HYPOTHESIS_STARGAZER
>>> segeval.boundary_similarity(manual, automatic)

This produces:

{
 'stargazer,3,h2': Decimal('0.5'),
 'stargazer,3,h1': Decimal('0.45'),
 'stargazer,6,h1': Decimal('0.5833333333333333333333333333'),
 'stargazer,1,h1': Decimal('0.5714285714285714285714285714'),
 'stargazer,1,h2': Decimal('0.3888888888888888888888888889'),
 'stargazer,6,h2': Decimal('0.3888888888888888888888888889'),
 'stargazer,7,h2': Decimal('0.3181818181818181818181818182'),
 'stargazer,7,h1': Decimal('0.5'),
 'stargazer,5,h1': Decimal('0.4166666666666666666666666667'),
 'stargazer,5,h2': Decimal('0.375'),
 'stargazer,2,h1': Decimal('0.4285714285714285714285714286'),
 'stargazer,2,h2': Decimal('0.3333333333333333333333333333'),
 'stargazer,4,h2': Decimal('0.3636363636363636363636363636'),
 'stargazer,4,h1': Decimal('0.4444444444444444444444444444')
}

Note that the key for each value is the document name (stargazer), followed by the coder from the manual dataset (e.g., 3) and the coder from the automatic dataset (e.g., h2).

Computing Inter-Coder Agreement

Given a dataset, if we wanted to compute the actual agreement between all coders using boundary_similarity() we can use:

>>> import segeval
>>> dataset = segeval.HEARST_1997_STARGAZER
>>> segeval.actual_agreement_linear(dataset)
Decimal('0.5300546448087431693989071038')

If instead one would like to use segmentation_similarity(), we can specify this function:

>>> segeval.actual_agreement_linear(dataset, fnc_compare=segeval.segmentation_similarity)
Decimal('0.7952380952380952380952380952')

If instead we want a chance-corrected inter-coder agreement coefficient, Fleiss’ [image: \kappa] and [image: \pi] adapted to use boundary_similarity() can be used:

>>> segeval.fleiss_kappa_linear(dataset)
Decimal('0.4414910889068254984367317023')
>>> segeval.fleiss_pi_linear(dataset)
Decimal('0.4405412438199323445225084569')

Developer Interface

The APIs for most metrics can be provided either two segmentations to compare or a dataset to perform pairwise comparisons upon.
There are a variety of parameters that can be specified other than that which is compared, but all have defaults specified.

Boundary-Edit-Distance-based Metrics

These segmentation comparison metrics were introduced in [Fournier2013].

	
segeval.boundary_statistics(*args, **kwargs)

	
	Computes a large number of BED-based and other segmentation statistics, returning a dict() that includes:

	
	count_edits, a count of BED edits;

	additions, a list of BED addition edits;

	substitutions, a list of BED substitution edits;

	transpositions, a list of BED transposition edits;

	full_misses, a list of fully-missed boundaries (regardless of edits);

	boundaries_all, a count of boundaries compared;

	matches, a list of matching boundaries;

	pbs, a count of potential boundary types.

	
class segeval.BoundaryFormat

	
	An enum with options that include:

	
	sets, a boundary set string; see boundary_string_from_masses()

	mass, a tuple of segment masses; see convert_positions_to_masses()

	position, a tuple of position segment labels; see convert_masses_to_positions()

	nltk, a string representation of segment positions; see convert_nltk_to_masses()

Boundary Similarity (B)

This metric compares the correctness of boundary pairs between segmentations [Fournier2013].

Note

This is a recommended segmentation comparison metric for situations when there is no reference segmentation to compare against; see [Fournier2013].

	
segeval.boundary_similarity(segmentation_a, segmentation_b, **kwargs)

	

	Parameters:	segmentation_* (segmentation or Dataset) – Segmentation or dataset containing segmentations of a particular format; see BoundaryFormat

	
segeval.boundary_similarity(dataset, **kwargs)

	

	Parameters:	dataset (Dataset) – Dataset of segmentations

	
segeval.boundary_similarity()

	

	Parameters:	
	boundary_format (BoundaryFormat enum) – Segmentation format; default BoundaryFormat.mass

	permuted (bool [https://docs.python.org/2/library/functions.html#bool]) – Use pairwise permutations v.s. combinations; default False

	one_minus (bool [https://docs.python.org/2/library/functions.html#bool]) – Return [image: 1-value]; default False

	return_parts (bool [https://docs.python.org/2/library/functions.html#bool]) – Return tuples of numerators, demoninators, or other values comprising a metric; default False

	n_t (int [https://docs.python.org/2/library/functions.html#int]) – See boundary_edit_distance()

	boundary_types (set [https://docs.python.org/2/library/stdtypes.html#set]) – Set of allowewable boundary types; default set([1])

	weight (tuple [https://docs.python.org/2/library/functions.html#tuple]) – Tuple of weighting functions, see Weighting Functions; default is scaling of substitution and transposition but not addition edits (weight_a(), weight_s_scale(), weight_t_scale())

Segmentation Similarity (S)

Originally introduced in [FournierInkpen2012], this metric uses the revised boundary edit distance in [Fournier2013] and compares segmentations to provide the proportion of unedited potential boundary positions.

Warning

Prefer boundary_similarity() instead; see [Fournier2013].

	
segeval.segmentation_similarity(segmentation_a, segmentation_b, **kwargs)

	For parameters see boundary_similarity()

	
segeval.segmentation_similarity(dataset, **kwargs)

	For parameters see boundary_similarity()

	
segeval.segmentation_similarity()

	For parameters see boundary_similarity()

Boundary Edit Distance (BED)

An edit distance proposed in [Fournier2013] that operates upon boundaries to produce:

	Additions/deletion edits to model full misses,

	Transposition edits to model near misses, and

	Substitution edits to model boundary-type confusion.

For more details, see Section 3.1 of [Fournier2013b].

	
segeval.boundary_edit_distance(boundary_string_a, boundary_string_b, n_t=2)

	Computes boundary edit distance between two boundary strings. Returns a list of Addition, Substitution, and Transposition edit sets.

	Parameters:	
	boundary_string_a (tuple [https://docs.python.org/2/library/functions.html#tuple]) – Boundary string to compare; produced by boundary_string_from_masses()

	boundary_string_b (tuple [https://docs.python.org/2/library/functions.html#tuple]) – See boundary_string_a

	n_t (int [https://docs.python.org/2/library/functions.html#int]) – Maximum distance (in potential boundary positions) that a transposition may span

BED-based Confusion Matrix (BED-CM)

A confusion-matrix-formulation proposed in [Fournier2013] that uses BED to populate a matrix by using matches and scaled transpositions as correct classifications for boundary types, substitutions as confusion between boundary types, and additions/deletions as missing boundary types.

Note

This is a recommended segmentation comparison metric, when summarized by an information-retrieval metric such as precision(), recall(), fmeasure(), etc., for situations when there is a reference segmentation to compare against; see [Fournier2013].

	
segeval.boundary_confusion_matrix(hypothesis, reference, **kwargs)

	

	Parameters:	segmentation_* (segmentation) – Segmentation of a particular format; see BoundaryFormat

	
segeval.boundary_confusion_matrix(dataset, **kwargs)

	

	Parameters:	dataset (Dataset) – Dataset of segmentations

	
segeval.boundary_confusion_matrix(*args, **kwargs)

	

Weighting Functions

These functions are used by BED-based metrics to weight edit operations.

	
segeval.weight_a(additions)

	Default unweighted weighting function for addition edit operations.

	
segeval.weight_s(substitutions, max_s, min_s=1)

	Unweighted weighting function for substitution edit operations.

	
segeval.weight_s_scale(substitutions, max_s, min_s=1)

	Default weighting function for substitution edit operations by the distance between ordinal boundary types.

	
segeval.weight_t(transpositions, max_n)

	Unweighted weighting function for transposition edit operations.

	
segeval.weight_t_scale(transpositions, max_n)

	Default weighting function for transposition edit operations by the distance that transpositions span.

Traditional Metrics

	
segeval.compute_window_size(reference, **kwargs)

	

Pk

Proposed in [BeefermanBerger1999], this segmentation comparison metric runs a window over a hypothesis and reference segmentation and counts those hypothesis windows whose ends are in differing segmentations that do not agree with the reference window as being in error. These errors are then summed over all windows.

Warning

Prefer boundary_similarity() instead; see [Fournier2013].

	
segeval.pk(hypothesis, reference, **kwargs)

	

	Parameters:	
	hypothesis (segmentation or Dataset) – Hypothetical, or automatically-generated, segmentation (or dataset of segmentations) of a particular format; see BoundaryFormat

	reference (segmentation or Dataset) – Reference, or manually-created, segmentation (or dataset of segmentations) of a particular format; see BoundaryFormat

	
segeval.pk(dataset, **kwargs)

	

	Parameters:	dataset (Dataset) – Dataset of segmentations

	
segeval.pk()

	

	Parameters:	
	boundary_format (BoundaryFormat enum) – Segmentation format; default BoundaryFormat.mass

	permuted (bool [https://docs.python.org/2/library/functions.html#bool]) – Use pairwise permutations v.s. combinations; default True

	one_minus (bool [https://docs.python.org/2/library/functions.html#bool]) – Return [image: 1-value]; default False

	return_parts (bool [https://docs.python.org/2/library/functions.html#bool]) – Return tuples of numerators, demoninators, or other values comprising a metric; default False

	window_size (int [https://docs.python.org/2/library/functions.html#int]) – Overriding window size – if not None, this replaces the per-comparison window size computed using compute_window_size() as the window size used; default None

	fnc_round (function) – Rounding function used when computing window size, see compute_window_size(); default round() [https://docs.python.org/2/library/functions.html#round]

WindowDiff

Proposed in [PevznerHearst2002], this segmentation comparison metric is an adaptation of Pk which runs a window over a hypothesis and reference segmentation and counts those hypothesis windows with differing numbers of contained boundaries that do not agree with the reference window as being in error. These errors are then summed over all windows.

Warning

Prefer boundary_similarity() instead; see [Fournier2013].

	
segeval.window_diff(hypothesis, reference, **kwargs)

	For parameters see pk()

	
segeval.window_diff(dataset, **kwargs)

	For parameters see pk()

	
segeval.window_diff()

	For parameters see pk()

Inter-coder Agreement Coefficients

Originally adapted in [FournierInkpen2012] from formulations provided by [ArtsteinPoesio2008], these have inter-coder agreement have been modified by [Fournier2013] to better suite the measurement of inter-coder agreement of segmentation boundaries using boundary_similarity() for actual agreement.

	
segeval.actual_agreement_linear()

	Calculate actual (i.e., observed or [image: \\text{A}_a]), boundary agreement without accounting for chance, using [ArtsteinPoesio2008]‘s formulation as adapted by [Fournier2013].

	Parameters:	
	fnc_compare (function) – Segmentation comparison metric function to use; default boundary_similarity()

	boundary_format (BoundaryFormat enum) – Segmentation format; default BoundaryFormat.mass

	permuted (bool [https://docs.python.org/2/library/functions.html#bool]) – Use pairwise permutations v.s. combinations; default False

	one_minus (bool [https://docs.python.org/2/library/functions.html#bool]) – Return [image: 1-value]; default False

	return_parts (bool [https://docs.python.org/2/library/functions.html#bool]) – Return tuples of numerators, demoninators, or other values comprising a metric; default False

	n_t (int [https://docs.python.org/2/library/functions.html#int]) – See boundary_edit_distance()

	boundary_types (set [https://docs.python.org/2/library/stdtypes.html#set]) – Set of allowewable boundary types; default set([1])

	weight (tuple [https://docs.python.org/2/library/functions.html#tuple]) – Tuple of weighting functions, see Weighting Functions; default is scaling of substitution and transposition but not addition edits (weight_a(), weight_s_scale(), weight_t_scale())

	
segeval.fleiss_pi_linear(dataset, **kwargs)

	Calculates Fleiss’ [image: \pi] (or multi-[image: \pi]), originally proposed in
[Fleiss1971], and is equivalent to Siegel and Castellan’s [image: K]
[SiegelCastellan1988]. For 2 coders, this is equivalent to Scott’s [image: \pi]
[Scott1955].

For parameters see actual_agreement_linear()

	
segeval.fleiss_kappa_linear(dataset, **kwargs)

	Calculates Fleiss’ [image: \kappa] (or multi-[image: \kappa]), originally proposed in
[DaviesFleiss1982]. For 2 coders, this is equivalent to Cohen’s [image: \kappa]
[Cohen1960].

For parameters see actual_agreement_linear()

	
segeval.artstein_poesio_bias_linear(dataset, **kwargs)

	Artstein and Poesio’s annotator bias [ArtsteinPoesio2008].

For parameters see actual_agreement_linear()

Format Conversion

These utility functions are used internally and provided to allow for the conversion between the supported segmentation formats (see BoundaryFormat).

	
segeval.boundary_string_from_masses(masses)

	Creates a “boundary string”, or sequence of boundary type sets from a list of segment masses, e.g., [5,3,5] becomes
[(),(),(),(),(1),(),(),(1),(),(),(),()].

	Parameters:	masses (tuple [https://docs.python.org/2/library/functions.html#tuple]) – Segmentation masses.

	
segeval.convert_positions_to_masses(positions)

	Convert an ordered sequence of boundary position labels into a
sequence of segment masses, e.g., [1,1,1,1,1,2,2,2,3,3,3,3,3] becomes
[5,3,5].

	Parameters:	segments (tuple [https://docs.python.org/2/library/functions.html#tuple]) – Ordered sequence of which segments a unit belongs to.

Deprecated since version 1.0.

	
segeval.convert_masses_to_positions(masses)

	Converts a sequence of segment masses into an ordered sequence of section
labels for each unit, e.g., [5,3,5] becomes
[1,1,1,1,1,2,2,2,3,3,3,3,3].

	Parameters:	masses (tuple [https://docs.python.org/2/library/functions.html#tuple]) – Segment mass sequence.

	
segeval.convert_nltk_to_masses(string, boundary_symbol='1')

	Convert an NLTK [http://nltk.org/]-formatted segmentation into masses, e.g., 000001000100000 becomes
[5,3,5].

For more information, see nltk.metrics.segmentation [http://nltk.org/api/nltk.metrics.html#module-nltk.metrics.segmentation].

	Parameters:	
	string (str [https://docs.python.org/2/library/functions.html#str]) – NLTK-formatted segmentation.

	boundary_symbol (str [https://docs.python.org/2/library/functions.html#str]) – String that represents a boundary.

Data

These classes and functions deal with segmentation data representation and manipuation.

Model

These classes are used to model and store text (i.e., item) segmentations (i.e., codings).

	
class segeval.Dataset(item_coder_data=None, properties=None, boundary_types=None, boundary_format='mass')

	Represents a set of texts (i.e., items) that have been segmentations by coders.

	
copy()

	Create a deep copy of the entire dataset object and properties.

	
class segeval.Field

	
	An enum with options representing json fields when storing segmentations which include:

	
	segmentation_type, the type if segmentation; default is SegmentationType.linear

	items, items with annotators and codings stored within

	codings, annotators and codings stored within

	
class segeval.SegmentationType

	
	An enum with options representing segmentation structure types including:

	
	linear, linear segmentation

Input/Output

These functions serialization and de-serialization segmentation datasets.
The recommended serialization format is JSON.

See also

JSON (JavaScript Object Notation) [http://www.json.org/]

	
segeval.input_linear_mass_tsv(filepath, delimiter='\t')

	Takes a file path. Returns segmentation mass codings as a Dataset.

	Parameters:	
	filepath (str [https://docs.python.org/2/library/functions.html#str]) – path to the mass file containing segment mass codings.

	delimiter (str [https://docs.python.org/2/library/functions.html#str]) – the delimiter used when reading a TSV file (by default,
a tab, but it can also be a comma, whitespace, etc.

	
segeval.input_linear_mass_json(filepath)

	Reads a file path. Returns segmentation mass codings as a Dataset.

	Parameters:	filepath (str()) – Path to the mass file containing segment position codings.

	
segeval.output_linear_mass_json(filepath, dataset)

	Takes a file path and Dataset and serializes it as JSON.

	Parameters:	filepath (str()) – Path to the mass file containing segment position codings.

	
segeval.load_nested_folders_dict(containing_dir, filetype, dataset=None, prepend_item=[])

	Loads TSV files from a file directory structure, which reflects the
directory structure in nested dict() with each directory name
representing a key in these dict().

	Parameters:	
	containing_dir (str [https://docs.python.org/2/library/functions.html#str]) – Root directory containing sub-directories which
contain segmentation files.

	filetype (str [https://docs.python.org/2/library/functions.html#str]) – File type to load (e.g., json or tsv).

Information-Retrieval-related Statistics

	
segeval.precision(matrix, classification=None, version=0)

	Calculate precision.

	Parameters:	
	matrix (ConfusionMatrix) – Confusion matrix

	classification (Any dict [https://docs.python.org/2/library/stdtypes.html#dict] index) – Classification label to compute this metric for

	version (Average) – Averaging-method version.

	
segeval.recall(matrix, classification=None, version=0)

	Calculate recall.

	Parameters:	
	matrix (ConfusionMatrix) – Confusion matrix

	classification (Any dict [https://docs.python.org/2/library/stdtypes.html#dict] index) – Classification label to compute this metric for

	version (Average) – Averaging-method version.

	
segeval.fmeasure(matrix, classification=None, beta=Decimal('1.0'), version=0)

	Calculate FMeasure.

	Parameters:	
	matrix (ConfusionMatrix) – Confusion matrix

	classification (Any dict [https://docs.python.org/2/library/stdtypes.html#dict] index) – Classification label to compute this metric for

	version (Average) – Averaging-method version.

	
segeval.summarize(pairs)

	Takes a list of values and returns the mean, standard deviation, variance, standard error, and number of values.

	Parameters:	pairs (list [https://docs.python.org/2/library/functions.html#list]) – List of numerical values

Model

Classes used to model segmentation comparisons so that they can be summarized by information retrieval related statistics (e.g., precision()).

	
class segeval.Average

	
	An enum with options representing the methods of computing averages:

	
	micro, micro-average

	macro, macro-average

For more details, see the Stanford IR Book [http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-text-classification-1.html].

	
class segeval.ConfusionMatrix

	A dict()-like representation of a confusion matrix offering some automation.
To access/store values, use: matrix[predicted][actual].

	
classes()

	Retrieve the set of all classes.

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 segeval	

Index

 A
 | B
 | C
 | D
 | F
 | I
 | L
 | O
 | P
 | R
 | S
 | W

A

 	
 	actual_agreement_linear() (in module segeval)

 	
 	artstein_poesio_bias_linear() (in module segeval)

 	Average (class in segeval)

B

 	
 	boundary_confusion_matrix() (in module segeval), [1], [2]

 	boundary_edit_distance() (in module segeval)

 	boundary_similarity() (in module segeval), [1], [2]

 	
 	boundary_statistics() (in module segeval)

 	boundary_string_from_masses() (in module segeval)

 	BoundaryFormat (class in segeval)

C

 	
 	classes() (segeval.ConfusionMatrix method)

 	compute_window_size() (in module segeval)

 	ConfusionMatrix (class in segeval)

 	
 	convert_masses_to_positions() (in module segeval)

 	convert_nltk_to_masses() (in module segeval)

 	convert_positions_to_masses() (in module segeval)

 	copy() (segeval.Dataset method)

D

 	
 	Dataset (class in segeval)

F

 	
 	Field (class in segeval)

 	fleiss_kappa_linear() (in module segeval)

 	
 	fleiss_pi_linear() (in module segeval)

 	fmeasure() (in module segeval)

I

 	
 	input_linear_mass_json() (in module segeval)

 	
 	input_linear_mass_tsv() (in module segeval)

L

 	
 	load_nested_folders_dict() (in module segeval)

O

 	
 	output_linear_mass_json() (in module segeval)

P

 	
 	pk() (in module segeval), [1], [2]

 	
 	precision() (in module segeval)

R

 	
 	recall() (in module segeval)

S

 	
 	segeval (module), [1]

 	segmentation_similarity() (in module segeval), [1], [2]

 	
 	SegmentationType (class in segeval)

 	summarize() (in module segeval)

W

 	
 	weight_a() (in module segeval)

 	weight_s() (in module segeval)

 	weight_s_scale() (in module segeval)

 	
 	weight_t() (in module segeval)

 	weight_t_scale() (in module segeval)

 	window_diff() (in module segeval), [1], [2]

krTheme Sphinx Style

This repository contains sphinx styles Kenneth Reitz uses in most of
his projects. It is a derivative of Mitsuhiko’s themes for Flask and Flask related
projects. To use this style in your Sphinx documentation, follow
this guide:

	put this folder as _themes into your docs folder. Alternatively
you can also use git submodules to check out the contents there.

	add this to your conf.py:

sys.path.append(os.path.abspath('_themes'))
html_theme_path = ['_themes']
html_theme = 'flask'

The following themes exist:

	kr

	the standard flask documentation theme for large projects

	kr_small

	small one-page theme. Intended to be used by very small addon libraries.

 _static/up.png

_static/minus.png

_static/comment-close.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/plus.png

_static/comment-bright.png

_images/math/f495206229b44c2ef6fffe40ac005576e436aff1.png

_images/math/00092128bd629bb7974e54656c0daf211559ad04.png

_images/math/5def6be2eca948c7b76b2314bbd725aa0a4d359e.png

_images/math/72a28d180872d27d0a3a5b9c89687b82eef91bd4.png

_static/segmentation.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Segmentation Evaluation using SegEval

 		Introduction

 		License

 		Installation

 		Distribute & Pip

 		Get the Code

 		Quickstart

 		Loading Data

 		Comparing Segmentations

 		Computing Inter-Coder Agreement

 		Developer Interface

 		Boundary-Edit-Distance-based Metrics

 		Boundary Similarity (B)

 		Segmentation Similarity (S)

 		Boundary Edit Distance (BED)

 		BED-based Confusion Matrix (BED-CM)

 		Weighting Functions

 		Traditional Metrics

 		Pk

 		WindowDiff

 		Inter-coder Agreement Coefficients

 		Format Conversion

 		Data

 		Model

 		Input/Output

 		Information-Retrieval-related Statistics

 		Model

_static/down.png

_images/math/0aca8aafc0a716e6eea6c384fa7f1009f9bbb280.png
— value

_static/comment.png

